基于cfd的船用側(cè)推器.doc
約71頁(yè)DOC格式手機(jī)打開(kāi)展開(kāi)
基于cfd的船用側(cè)推器,摘要側(cè)推器可輔助船舶操縱,在船舶和海洋工程領(lǐng)域有著非常廣泛的應(yīng)用,作為動(dòng)力定位系統(tǒng)的標(biāo)準(zhǔn)組成裝置,與螺旋槳相比,其水動(dòng)力性能研究不夠充分,無(wú)公開(kāi)的設(shè)計(jì)圖譜。在設(shè)計(jì)或計(jì)算中,主要采用部分的定型產(chǎn)品所標(biāo)定的額定推力,或用導(dǎo)管槳圖譜進(jìn)行替代設(shè)計(jì)并修正,結(jié)果有一定誤差,無(wú)法反映其真實(shí)的流場(chǎng)、推力構(gòu)成、船型影響,也無(wú)法比較不同側(cè)...
內(nèi)容介紹
此文檔由會(huì)員 違規(guī)屏蔽12 發(fā)布
摘 要
側(cè)推器可輔助船舶操縱,在船舶和海洋工程領(lǐng)域有著非常廣泛的應(yīng)用,作為動(dòng)力定位系統(tǒng)的標(biāo)準(zhǔn)組成裝置,與螺旋槳相比,其水動(dòng)力性能研究不夠充分,無(wú)公開(kāi)的設(shè)計(jì)圖譜。在設(shè)計(jì)或計(jì)算中,主要采用部分的定型產(chǎn)品所標(biāo)定的額定推力,或用導(dǎo)管槳圖譜進(jìn)行替代設(shè)計(jì)并修正,結(jié)果有一定誤差,無(wú)法反映其真實(shí)的流場(chǎng)、推力構(gòu)成、船型影響,也無(wú)法比較不同側(cè)推器的效率。故開(kāi)展對(duì)側(cè)推器的水動(dòng)力性能研究具有一定的理論意義和實(shí)用價(jià)值。
為研究側(cè)向推進(jìn)器的水動(dòng)力性能,本文以四葉Kaplan型可調(diào)距螺旋槳側(cè)推器的模型實(shí)驗(yàn)為依據(jù),采用CFD方法分別分析和計(jì)算了零航速下側(cè)推器的敞水性能以及帶船首側(cè)推器的水動(dòng)力性能,并將CFD敞水模擬計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比和驗(yàn)證。結(jié)果表明,所建立的模型和采用數(shù)值方法可行,適合用于分析側(cè)推器水動(dòng)力性能,其平均誤差在5%以?xún)?nèi)。
本文通過(guò)零航速下不同參數(shù)側(cè)推器敞水動(dòng)力性能的計(jì)算和流場(chǎng)模擬,研究了不同螺距比、盤(pán)面比、轂徑比、通道長(zhǎng)度、船首側(cè)斜角度以及葉梢間隙對(duì)側(cè)推器水動(dòng)力性能以及周?chē)鲌?chǎng)的影響。結(jié)果表明:螺距比、轂徑比和葉梢間隙對(duì)側(cè)推器水動(dòng)力性能的影響較大,側(cè)斜角度對(duì)側(cè)推器水動(dòng)力性能有一定的影響,而通道長(zhǎng)度和盤(pán)面比對(duì)側(cè)推器水動(dòng)力性能影響相對(duì)較小。
船首及航速的存在對(duì)側(cè)推器的水動(dòng)力性能有較大影響。為了更好地模擬側(cè)推器實(shí)際工作狀況,更準(zhǔn)確地分析帶船首側(cè)推器的性能和流場(chǎng)情況,利用NAPA軟件建立一個(gè)肥大型船首配備側(cè)推器來(lái)計(jì)算和分析船首及航速對(duì)側(cè)推器水動(dòng)力性能的影響。進(jìn)行了不同航速下帶船首側(cè)推器的水動(dòng)力性能研究,并通過(guò)側(cè)推器和船首流場(chǎng)的模擬驗(yàn)證了側(cè)推器失效的機(jī)理。研究結(jié)果表明:無(wú)航速時(shí),側(cè)推器效率最高,隨航速增加,側(cè)推器內(nèi)部槳的推力和轉(zhuǎn)矩會(huì)有所增大,但總體效率和推力下降,達(dá)到一定航速時(shí)會(huì)導(dǎo)致側(cè)推器完全失效;其原因在于,在來(lái)流的干擾下,由船首兩側(cè)的壓差構(gòu)成的附加推力急劇下降,并轉(zhuǎn)變?yōu)榉聪蛲屏?,抵消槳的推力,?dǎo)致失效。
關(guān)鍵詞:側(cè)推器;CFD;水動(dòng)力性能;航速;MRF;
Abstract
Transverse thrusters are widely used in ship and marine engineering especially in manoeuvring aids, but the difference from propeller is that as a standard component device of dynamic positioning system, the study on hydrodynamic performance of transverse thrusters is not sufficient. In the design and calculation, it mainly uses the rated thrust provided by manufacturers or modified design of ducted propeller. Thus, it can’t reflect the true flow field, thrust structure, ship impact and can not compare the efficiency. So the hydrodynamic performance analysis of transverse thrusters is of both fundamental and applied significance.
In order to study the hydrodynamic performance of transverse thrusters, by using CFD method, the hydrodynamic performance of transverse thrusters with ship speed and bow thrusters is studied. The simulation and verification of thrusters with a four-leaf Ka-type controllable pitch propeller are compared with experimental data and good agreement is obtained. Average error is less than 5%.
In the no ship speed condition, the effects of pitch ratio, expanded area ratio, boss ratio, tunnel length, wall inclination and tip clearance are observed on the performance of the transverse thrusters. The results show that pitch ratio, boss ratio and tip clearance have big effect on the performance; the tilt angle of the bow sides near the transverse thruster has some effecet on the performance; tunnel length and expanded area ratio have only a little effect on the performance.
The performance of bow thrusters has a strong dependence of their effectiveness on the bow and ship speed. In order to accurately analyze the flow field around the thrusters, a bow equipped by a thruster designed by NAPA is used to calculate the performance of bow thrusters with and without ship speed. After studying the change of performance under different ship speeds, the thrusters’ failure mechanism is discussed. The result proves that transverse thrusters are at the most effective when the vessel is stationary and the thrusters tend to lose effectiveness as the vessel increase its ahead. But the presence of ship speed will increase the thrust and torque of the inner propeller. The reason of thrusters’ failure lay to the pressure of the bow decreasing rapidly and reversing which balance out the thrust produced by the inner propeller.
Key words: transverse thrusters; CFD; hydrodynamic performance; ship speed; MRF
目 錄
摘 要 I
Abstract II
目 錄 III
Content V
第1章 緒論 1
1.1研究背景及意義 1
1.2側(cè)推器概述 2
1.2.1側(cè)推器的優(yōu)缺點(diǎn) 2
1.2.2側(cè)推器的結(jié)構(gòu) 3
1.2.3側(cè)推器的工作原理 4
1.3計(jì)算方法進(jìn)展 5
1.3.1 螺旋槳的升力面理論 5
1.3.2 螺旋槳的面元法 6
1.3.3 基于粘流理論的螺旋槳CFD計(jì)算方法 6
1.4基于CFD的螺旋槳水動(dòng)力性能研究現(xiàn)狀 7
1.5側(cè)推器國(guó)內(nèi)外的研究現(xiàn)狀 9
1.5.1 零航速時(shí),側(cè)推器推力和力矩的研究 9
1.5.2 有航速時(shí),側(cè)推器推力和力矩變化的研究 10
1.5.3 側(cè)推器機(jī)構(gòu)設(shè)計(jì)研究 11
1.6論文主要研究?jī)?nèi)容 11
第2章 側(cè)推器水動(dòng)力性能分析的數(shù)學(xué)模型 13
2.1概述 13
2.2數(shù)學(xué)模型 13
2.2.1基本控制方程 13
2.2.2湍流模型 14
2.3數(shù)值方法 18
2.3.1離散方法 18
2.3.2離散方程的求解 19
2.3.3多參考系模型 19
2.4側(cè)推器的性能特征 20
2.5本章小結(jié) 20
第3章 零航速時(shí)側(cè)推器敞水性能驗(yàn)證與分析 22
3.1三維模..
側(cè)推器可輔助船舶操縱,在船舶和海洋工程領(lǐng)域有著非常廣泛的應(yīng)用,作為動(dòng)力定位系統(tǒng)的標(biāo)準(zhǔn)組成裝置,與螺旋槳相比,其水動(dòng)力性能研究不夠充分,無(wú)公開(kāi)的設(shè)計(jì)圖譜。在設(shè)計(jì)或計(jì)算中,主要采用部分的定型產(chǎn)品所標(biāo)定的額定推力,或用導(dǎo)管槳圖譜進(jìn)行替代設(shè)計(jì)并修正,結(jié)果有一定誤差,無(wú)法反映其真實(shí)的流場(chǎng)、推力構(gòu)成、船型影響,也無(wú)法比較不同側(cè)推器的效率。故開(kāi)展對(duì)側(cè)推器的水動(dòng)力性能研究具有一定的理論意義和實(shí)用價(jià)值。
為研究側(cè)向推進(jìn)器的水動(dòng)力性能,本文以四葉Kaplan型可調(diào)距螺旋槳側(cè)推器的模型實(shí)驗(yàn)為依據(jù),采用CFD方法分別分析和計(jì)算了零航速下側(cè)推器的敞水性能以及帶船首側(cè)推器的水動(dòng)力性能,并將CFD敞水模擬計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比和驗(yàn)證。結(jié)果表明,所建立的模型和采用數(shù)值方法可行,適合用于分析側(cè)推器水動(dòng)力性能,其平均誤差在5%以?xún)?nèi)。
本文通過(guò)零航速下不同參數(shù)側(cè)推器敞水動(dòng)力性能的計(jì)算和流場(chǎng)模擬,研究了不同螺距比、盤(pán)面比、轂徑比、通道長(zhǎng)度、船首側(cè)斜角度以及葉梢間隙對(duì)側(cè)推器水動(dòng)力性能以及周?chē)鲌?chǎng)的影響。結(jié)果表明:螺距比、轂徑比和葉梢間隙對(duì)側(cè)推器水動(dòng)力性能的影響較大,側(cè)斜角度對(duì)側(cè)推器水動(dòng)力性能有一定的影響,而通道長(zhǎng)度和盤(pán)面比對(duì)側(cè)推器水動(dòng)力性能影響相對(duì)較小。
船首及航速的存在對(duì)側(cè)推器的水動(dòng)力性能有較大影響。為了更好地模擬側(cè)推器實(shí)際工作狀況,更準(zhǔn)確地分析帶船首側(cè)推器的性能和流場(chǎng)情況,利用NAPA軟件建立一個(gè)肥大型船首配備側(cè)推器來(lái)計(jì)算和分析船首及航速對(duì)側(cè)推器水動(dòng)力性能的影響。進(jìn)行了不同航速下帶船首側(cè)推器的水動(dòng)力性能研究,并通過(guò)側(cè)推器和船首流場(chǎng)的模擬驗(yàn)證了側(cè)推器失效的機(jī)理。研究結(jié)果表明:無(wú)航速時(shí),側(cè)推器效率最高,隨航速增加,側(cè)推器內(nèi)部槳的推力和轉(zhuǎn)矩會(huì)有所增大,但總體效率和推力下降,達(dá)到一定航速時(shí)會(huì)導(dǎo)致側(cè)推器完全失效;其原因在于,在來(lái)流的干擾下,由船首兩側(cè)的壓差構(gòu)成的附加推力急劇下降,并轉(zhuǎn)變?yōu)榉聪蛲屏?,抵消槳的推力,?dǎo)致失效。
關(guān)鍵詞:側(cè)推器;CFD;水動(dòng)力性能;航速;MRF;
Abstract
Transverse thrusters are widely used in ship and marine engineering especially in manoeuvring aids, but the difference from propeller is that as a standard component device of dynamic positioning system, the study on hydrodynamic performance of transverse thrusters is not sufficient. In the design and calculation, it mainly uses the rated thrust provided by manufacturers or modified design of ducted propeller. Thus, it can’t reflect the true flow field, thrust structure, ship impact and can not compare the efficiency. So the hydrodynamic performance analysis of transverse thrusters is of both fundamental and applied significance.
In order to study the hydrodynamic performance of transverse thrusters, by using CFD method, the hydrodynamic performance of transverse thrusters with ship speed and bow thrusters is studied. The simulation and verification of thrusters with a four-leaf Ka-type controllable pitch propeller are compared with experimental data and good agreement is obtained. Average error is less than 5%.
In the no ship speed condition, the effects of pitch ratio, expanded area ratio, boss ratio, tunnel length, wall inclination and tip clearance are observed on the performance of the transverse thrusters. The results show that pitch ratio, boss ratio and tip clearance have big effect on the performance; the tilt angle of the bow sides near the transverse thruster has some effecet on the performance; tunnel length and expanded area ratio have only a little effect on the performance.
The performance of bow thrusters has a strong dependence of their effectiveness on the bow and ship speed. In order to accurately analyze the flow field around the thrusters, a bow equipped by a thruster designed by NAPA is used to calculate the performance of bow thrusters with and without ship speed. After studying the change of performance under different ship speeds, the thrusters’ failure mechanism is discussed. The result proves that transverse thrusters are at the most effective when the vessel is stationary and the thrusters tend to lose effectiveness as the vessel increase its ahead. But the presence of ship speed will increase the thrust and torque of the inner propeller. The reason of thrusters’ failure lay to the pressure of the bow decreasing rapidly and reversing which balance out the thrust produced by the inner propeller.
Key words: transverse thrusters; CFD; hydrodynamic performance; ship speed; MRF
目 錄
摘 要 I
Abstract II
目 錄 III
Content V
第1章 緒論 1
1.1研究背景及意義 1
1.2側(cè)推器概述 2
1.2.1側(cè)推器的優(yōu)缺點(diǎn) 2
1.2.2側(cè)推器的結(jié)構(gòu) 3
1.2.3側(cè)推器的工作原理 4
1.3計(jì)算方法進(jìn)展 5
1.3.1 螺旋槳的升力面理論 5
1.3.2 螺旋槳的面元法 6
1.3.3 基于粘流理論的螺旋槳CFD計(jì)算方法 6
1.4基于CFD的螺旋槳水動(dòng)力性能研究現(xiàn)狀 7
1.5側(cè)推器國(guó)內(nèi)外的研究現(xiàn)狀 9
1.5.1 零航速時(shí),側(cè)推器推力和力矩的研究 9
1.5.2 有航速時(shí),側(cè)推器推力和力矩變化的研究 10
1.5.3 側(cè)推器機(jī)構(gòu)設(shè)計(jì)研究 11
1.6論文主要研究?jī)?nèi)容 11
第2章 側(cè)推器水動(dòng)力性能分析的數(shù)學(xué)模型 13
2.1概述 13
2.2數(shù)學(xué)模型 13
2.2.1基本控制方程 13
2.2.2湍流模型 14
2.3數(shù)值方法 18
2.3.1離散方法 18
2.3.2離散方程的求解 19
2.3.3多參考系模型 19
2.4側(cè)推器的性能特征 20
2.5本章小結(jié) 20
第3章 零航速時(shí)側(cè)推器敞水性能驗(yàn)證與分析 22
3.1三維模..