吊艙式電力推進(jìn)控制.doc
約85頁(yè)DOC格式手機(jī)打開展開
吊艙式電力推進(jìn)控制,摘要吊艙式電力推進(jìn)已經(jīng)成為世界造船業(yè)廣泛關(guān)注的一種新型推進(jìn)方式,對(duì)吊艙推進(jìn)系統(tǒng)的研究成為了當(dāng)今船舶研究的熱點(diǎn)之一。吊艙推進(jìn)器集推進(jìn)裝置與回轉(zhuǎn)裝置于一體,加劇了船舶航速與航向之間的耦合作用,給船舶控制帶來(lái)了新問(wèn)題。因此,研究吊艙船舶推進(jìn)系統(tǒng)的控制方法具有重要意義。本文以吊艙式電力推進(jìn)船舶為研究對(duì)象,開展了以下工作:首先,...


內(nèi)容介紹
此文檔由會(huì)員 違規(guī)屏蔽12 發(fā)布
摘 要
吊艙式電力推進(jìn)已經(jīng)成為世界造船業(yè)廣泛關(guān)注的一種新型推進(jìn)方式,對(duì)吊艙推進(jìn)系統(tǒng)的研究成為了當(dāng)今船舶研究的熱點(diǎn)之一。吊艙推進(jìn)器集推進(jìn)裝置與回轉(zhuǎn)裝置于一體,加劇了船舶航速與航向之間的耦合作用,給船舶控制帶來(lái)了新問(wèn)題。因此,研究吊艙船舶推進(jìn)系統(tǒng)的控制方法具有重要意義。
本文以吊艙式電力推進(jìn)船舶為研究對(duì)象,開展了以下工作:
首先,研究了吊艙推進(jìn)器的推進(jìn)原理和推進(jìn)控制系統(tǒng)構(gòu)成。根據(jù)時(shí)標(biāo)分離原則,提出一種吊艙推進(jìn)船舶的航速與航向分離控制結(jié)構(gòu),簡(jiǎn)化了控制器的設(shè)計(jì)。提出了吊艙推力矢量模型及其具體計(jì)算方法,建立了以螺旋槳轉(zhuǎn)速和吊艙方位角為控制量的吊艙推進(jìn)船舶一體化運(yùn)動(dòng)模型。在Matlab/Simulink環(huán)境下建立仿真模塊,進(jìn)行船舶回轉(zhuǎn)運(yùn)動(dòng)仿真和Z型運(yùn)動(dòng)仿真。仿真結(jié)果表明,所建立的模型能夠客觀的反映吊艙船舶的運(yùn)動(dòng)特性,為控制器的設(shè)計(jì)奠定了基礎(chǔ)。
其次,設(shè)計(jì)了一種航速智能積分規(guī)則自調(diào)整模糊控制器,解決了常規(guī)模糊控制器穩(wěn)態(tài)精度低和自適應(yīng)性差的問(wèn)題,而且動(dòng)態(tài)特性和魯棒性都優(yōu)于PID控制器;設(shè)計(jì)了一種航向飽和函數(shù)自適應(yīng)模糊滑??刂破鳎谙魅醵墩竦耐瑫r(shí)保持了良好的控制品質(zhì),對(duì)船舶模型參數(shù)和環(huán)境干擾的不確定性具有很強(qiáng)的魯棒性。
最后,將航速控制器與航向控制器同時(shí)施加于吊艙船舶運(yùn)動(dòng)一體化模型,對(duì)航速與航向進(jìn)行聯(lián)合控制仿真。仿真結(jié)果表明,聯(lián)合控制不僅能實(shí)現(xiàn)航向的快速無(wú)超調(diào)跟蹤,而且可以克服船舶轉(zhuǎn)向過(guò)程中的航速下降,在響應(yīng)時(shí)間、超調(diào)量和穩(wěn)態(tài)精度方面都優(yōu)于航向單獨(dú)控制的系統(tǒng)。
關(guān)鍵詞 吊艙式電力推進(jìn);推力矢量;分離控制;模糊控制;滑模變結(jié)構(gòu)控制
Abstract
Podded electric propulsion has become a new propulsion mode that aroused wide concern among the world shipbuilding industry. Research on the podded propulsion system has become one of the central issues in ship study. Podded propulsion unit set propulsion device and rotary device as one, so the coupling effect between the ship speed and heading is exacerbated, which brought new problems for ship control. Therefore, studying podded propulsion control system is of great significance.
Taking podded electric propulsion ship as research object, this paper carries out following works:
Firstly, study the principle and control system structure of podded propulsion. Based on the time-scale separation principle, a dividable control structure of speed and heading is presented, which simplifies the controllers. The pod thrust vector model and its calculation method are proposed, an integration simulation model of the podded propulsion ship is established whose inputs are propeller speed and pod azimuth degree. In Matlab/Simulink environment, simulation module is built, and then the ship turning and Zigzag motion are simulated. Simulation results show that the model can reflect motion characteristics of the podded ship objectively and lay a good foundation of the controllers design.
Secondly, an intelligent integral rule self-adjusting speed fuzzy controller is designed, which solved the steady-state error and robustness issues of conventional fuzzy controller, and its dynamic performance and robustness are superior to PID controller. Designing adaptive fuzzy sliding mode heading controller weakens the chattering and maintains good control quality. The controller is robust to the considered uncertainties of ship model parameters and environment disturbances.
Finally, the speed controller and heading controller are simultaneously applied to the integration simulation model of the podded propulsion ship. Combined speed and heading control simulation results show that combined control not only achieves the rapid heading tracking with no overshoot, but overcomes the speed decline while the ship is turning, which is better than single control system in response time, overshoot and steady state accuracy.
Keywords podded electric propulsion; thrust vector; dividable control; fuzzy control; sliding mode control
目 錄
摘 要 I
Abstract III
第1章 緒 論 1
1.1 課題研究背景及意義 1
1.2 國(guó)內(nèi)外研究發(fā)展現(xiàn)狀綜述 1
1.2.1 吊艙推進(jìn)器的研究概況 1
1.2.2 船舶航速和航向控制的研究概況 4
1.3 本文的主要工作及內(nèi)容安排 5
第2章 系統(tǒng)概述及整體控制方案 7
2.1 吊艙推進(jìn)器的原理 7
2.2 推進(jìn)系統(tǒng)半實(shí)物仿真 10
2.3 整體控制方案的提出 11
2.4 本章小結(jié) 13
第3章 吊艙推進(jìn)船舶一體化運(yùn)動(dòng)模型 14
3.1 吊艙船舶運(yùn)動(dòng)方程 14
3.2 吊艙推力矢量模型 16
3.2.1 吊艙推力矢量 16
3.2.2 吊艙方位角調(diào)節(jié)模型 18
3.2.3 推進(jìn)電機(jī)轉(zhuǎn)速調(diào)節(jié)模型 18
3.3 裸船體力及力矩模型 18
3.3.1 慣性流體力及力矩 19
3.3.2 粘性流體力及力矩 19
3.4 船舶運(yùn)動(dòng)環(huán)境干擾模型 19
3.4.1 風(fēng)干擾力的模型 20
3.4.2 浪干擾力的模型 21
3.5 船舶運(yùn)動(dòng)響應(yīng)型模型 21
3.6 基于Simulink的船舶模型仿真 22
3.6.1 模型的建立 22
3.6.2 仿真與結(jié)果分析 24
3.7 本章小結(jié) 27
第4章 吊艙推進(jìn)船舶的航速控制 28
4.1 模糊控制的基本原理 28
4.1.1 模糊控制系統(tǒng)的組成 28
4.1.2 模糊控制器設(shè)計(jì)的基本方法 29
4.2 航速模糊控制器設(shè)計(jì) 31
4.2.1 船舶航速控制系統(tǒng) 31
4.2.2 常規(guī)航速模糊控制器設(shè)計(jì) 31
4.3 改進(jìn)的航速模糊控制器設(shè)計(jì) 33
4.3.1 常規(guī)模糊控制的缺陷 33
4.3.2 智能積分的引入 33
4.3.3 規(guī)則自調(diào)整因子的引入 34
4.4 航速模糊控制系統(tǒng)仿真 35
4.4.1 航速模糊控制器的仿真 35
4.4.2 無(wú)環(huán)境干..
吊艙式電力推進(jìn)已經(jīng)成為世界造船業(yè)廣泛關(guān)注的一種新型推進(jìn)方式,對(duì)吊艙推進(jìn)系統(tǒng)的研究成為了當(dāng)今船舶研究的熱點(diǎn)之一。吊艙推進(jìn)器集推進(jìn)裝置與回轉(zhuǎn)裝置于一體,加劇了船舶航速與航向之間的耦合作用,給船舶控制帶來(lái)了新問(wèn)題。因此,研究吊艙船舶推進(jìn)系統(tǒng)的控制方法具有重要意義。
本文以吊艙式電力推進(jìn)船舶為研究對(duì)象,開展了以下工作:
首先,研究了吊艙推進(jìn)器的推進(jìn)原理和推進(jìn)控制系統(tǒng)構(gòu)成。根據(jù)時(shí)標(biāo)分離原則,提出一種吊艙推進(jìn)船舶的航速與航向分離控制結(jié)構(gòu),簡(jiǎn)化了控制器的設(shè)計(jì)。提出了吊艙推力矢量模型及其具體計(jì)算方法,建立了以螺旋槳轉(zhuǎn)速和吊艙方位角為控制量的吊艙推進(jìn)船舶一體化運(yùn)動(dòng)模型。在Matlab/Simulink環(huán)境下建立仿真模塊,進(jìn)行船舶回轉(zhuǎn)運(yùn)動(dòng)仿真和Z型運(yùn)動(dòng)仿真。仿真結(jié)果表明,所建立的模型能夠客觀的反映吊艙船舶的運(yùn)動(dòng)特性,為控制器的設(shè)計(jì)奠定了基礎(chǔ)。
其次,設(shè)計(jì)了一種航速智能積分規(guī)則自調(diào)整模糊控制器,解決了常規(guī)模糊控制器穩(wěn)態(tài)精度低和自適應(yīng)性差的問(wèn)題,而且動(dòng)態(tài)特性和魯棒性都優(yōu)于PID控制器;設(shè)計(jì)了一種航向飽和函數(shù)自適應(yīng)模糊滑??刂破鳎谙魅醵墩竦耐瑫r(shí)保持了良好的控制品質(zhì),對(duì)船舶模型參數(shù)和環(huán)境干擾的不確定性具有很強(qiáng)的魯棒性。
最后,將航速控制器與航向控制器同時(shí)施加于吊艙船舶運(yùn)動(dòng)一體化模型,對(duì)航速與航向進(jìn)行聯(lián)合控制仿真。仿真結(jié)果表明,聯(lián)合控制不僅能實(shí)現(xiàn)航向的快速無(wú)超調(diào)跟蹤,而且可以克服船舶轉(zhuǎn)向過(guò)程中的航速下降,在響應(yīng)時(shí)間、超調(diào)量和穩(wěn)態(tài)精度方面都優(yōu)于航向單獨(dú)控制的系統(tǒng)。
關(guān)鍵詞 吊艙式電力推進(jìn);推力矢量;分離控制;模糊控制;滑模變結(jié)構(gòu)控制
Abstract
Podded electric propulsion has become a new propulsion mode that aroused wide concern among the world shipbuilding industry. Research on the podded propulsion system has become one of the central issues in ship study. Podded propulsion unit set propulsion device and rotary device as one, so the coupling effect between the ship speed and heading is exacerbated, which brought new problems for ship control. Therefore, studying podded propulsion control system is of great significance.
Taking podded electric propulsion ship as research object, this paper carries out following works:
Firstly, study the principle and control system structure of podded propulsion. Based on the time-scale separation principle, a dividable control structure of speed and heading is presented, which simplifies the controllers. The pod thrust vector model and its calculation method are proposed, an integration simulation model of the podded propulsion ship is established whose inputs are propeller speed and pod azimuth degree. In Matlab/Simulink environment, simulation module is built, and then the ship turning and Zigzag motion are simulated. Simulation results show that the model can reflect motion characteristics of the podded ship objectively and lay a good foundation of the controllers design.
Secondly, an intelligent integral rule self-adjusting speed fuzzy controller is designed, which solved the steady-state error and robustness issues of conventional fuzzy controller, and its dynamic performance and robustness are superior to PID controller. Designing adaptive fuzzy sliding mode heading controller weakens the chattering and maintains good control quality. The controller is robust to the considered uncertainties of ship model parameters and environment disturbances.
Finally, the speed controller and heading controller are simultaneously applied to the integration simulation model of the podded propulsion ship. Combined speed and heading control simulation results show that combined control not only achieves the rapid heading tracking with no overshoot, but overcomes the speed decline while the ship is turning, which is better than single control system in response time, overshoot and steady state accuracy.
Keywords podded electric propulsion; thrust vector; dividable control; fuzzy control; sliding mode control
目 錄
摘 要 I
Abstract III
第1章 緒 論 1
1.1 課題研究背景及意義 1
1.2 國(guó)內(nèi)外研究發(fā)展現(xiàn)狀綜述 1
1.2.1 吊艙推進(jìn)器的研究概況 1
1.2.2 船舶航速和航向控制的研究概況 4
1.3 本文的主要工作及內(nèi)容安排 5
第2章 系統(tǒng)概述及整體控制方案 7
2.1 吊艙推進(jìn)器的原理 7
2.2 推進(jìn)系統(tǒng)半實(shí)物仿真 10
2.3 整體控制方案的提出 11
2.4 本章小結(jié) 13
第3章 吊艙推進(jìn)船舶一體化運(yùn)動(dòng)模型 14
3.1 吊艙船舶運(yùn)動(dòng)方程 14
3.2 吊艙推力矢量模型 16
3.2.1 吊艙推力矢量 16
3.2.2 吊艙方位角調(diào)節(jié)模型 18
3.2.3 推進(jìn)電機(jī)轉(zhuǎn)速調(diào)節(jié)模型 18
3.3 裸船體力及力矩模型 18
3.3.1 慣性流體力及力矩 19
3.3.2 粘性流體力及力矩 19
3.4 船舶運(yùn)動(dòng)環(huán)境干擾模型 19
3.4.1 風(fēng)干擾力的模型 20
3.4.2 浪干擾力的模型 21
3.5 船舶運(yùn)動(dòng)響應(yīng)型模型 21
3.6 基于Simulink的船舶模型仿真 22
3.6.1 模型的建立 22
3.6.2 仿真與結(jié)果分析 24
3.7 本章小結(jié) 27
第4章 吊艙推進(jìn)船舶的航速控制 28
4.1 模糊控制的基本原理 28
4.1.1 模糊控制系統(tǒng)的組成 28
4.1.2 模糊控制器設(shè)計(jì)的基本方法 29
4.2 航速模糊控制器設(shè)計(jì) 31
4.2.1 船舶航速控制系統(tǒng) 31
4.2.2 常規(guī)航速模糊控制器設(shè)計(jì) 31
4.3 改進(jìn)的航速模糊控制器設(shè)計(jì) 33
4.3.1 常規(guī)模糊控制的缺陷 33
4.3.2 智能積分的引入 33
4.3.3 規(guī)則自調(diào)整因子的引入 34
4.4 航速模糊控制系統(tǒng)仿真 35
4.4.1 航速模糊控制器的仿真 35
4.4.2 無(wú)環(huán)境干..