分形幾何的哲學(xué)思考.doc


約23頁DOC格式手機(jī)打開展開
分形幾何的哲學(xué)思考,philosophical thought of fractal geometry11400字23頁目錄引言1第一章 分形幾何的產(chǎn)生和發(fā)展21.1海岸線問題的出現(xiàn)21.2曼德布魯特對(duì)于海岸線問題的思考21.3幾個(gè)奇妙的圖形31.4分形幾何的產(chǎn)生61.5分形幾何的發(fā)展6第二章 分形幾何的基本內(nèi)容和基本概...


內(nèi)容介紹
此文檔由會(huì)員 hengtai88 發(fā)布
分形幾何的哲學(xué)思考
Philosophical thought of fractal geometry
11400字 23頁
目錄
引言 1
第一章 分形幾何的產(chǎn)生和發(fā)展 2
1.1海岸線問題的出現(xiàn) 2
1.2曼德布魯特對(duì)于海岸線問題的思考 2
1.3幾個(gè)奇妙的圖形 3
1.4分形幾何的產(chǎn)生 6
1.5分形幾何的發(fā)展 6
第二章 分形幾何的基本內(nèi)容和基本概念 7
2.2分形中的分維 7
2.3相似維數(shù)和盒子維數(shù) 8
2.4分形元 8
第三章 分形所蘊(yùn)含的哲學(xué) 11
3.1分形中的矛盾 11
3.2整體與局部 11
3.3創(chuàng)新的分形 12
3.4成功需要努力 12
3.5分形的美麗 13
第四章 分形幾何對(duì)于現(xiàn)代科學(xué)的影響 14
4.1基石作用 14
4.2維數(shù) 15
4.3隨機(jī)和規(guī)則 15
4.4無處不在的分形 16
結(jié)論 17
致謝 18
參考文獻(xiàn) 19
摘要 分形幾何作為一門發(fā)展時(shí)間較短的數(shù)學(xué)學(xué)科的一個(gè)分支,從分形起源的那個(gè)海岸線問題,到現(xiàn)在已經(jīng)有很多發(fā)展的分形,這門學(xué)科都在一定程度上改變著人們對(duì)于世界的認(rèn)識(shí),在科學(xué)上對(duì)于很多的學(xué)科,分形也起到非常重要的作用,分形中的內(nèi)容也對(duì)于現(xiàn)代的科學(xué)發(fā)展有著非常重要的作用,對(duì)于分形的研究的深入,分形中的很多研究成果也在重新啟發(fā)人們?nèi)ブ匦抡J(rèn)識(shí)現(xiàn)有的科學(xué),其中,分形中的局部與整體,整形與分形等等,這些矛盾的對(duì)立屬于哲學(xué)范圍的理論,在分形,以及很多學(xué)科中都有著非常重要的作用,許許多多的分形中的哲學(xué)內(nèi)容對(duì)現(xiàn)代科學(xué)也有很重要的作用,分形幾何作為一個(gè)工具性學(xué)科對(duì)其研究的深入,我們會(huì)發(fā)現(xiàn)很多很多有意思的結(jié)論,同時(shí)分形的發(fā)展也有利于其他學(xué)科的發(fā)展。如果僅僅用數(shù)學(xué)的眼光去看分形,我們得到的僅僅是一個(gè)失去靈性的數(shù)學(xué)工具,從不同的角度去觀察去研究,能得到一個(gè)全新的分形,一個(gè)活力充沛的分形,一個(gè)可以讓很多學(xué)科使用,認(rèn)可的分形,角度的不同,分形應(yīng)用的領(lǐng)域也不同,在不久的未來,分形的作用將會(huì)越來越大。
關(guān)鍵詞:分形 哲學(xué) 影響
Abstract Fractal geometry, a branch of mathematics whose development time is short, developed from the coastline problem symbolizing the fractal origin, to now have fractal many development. This subject, to a certain extent, changes people's opinions of the world, and plays a very an important role for many disciplines in science. What's more, the content of the fractal plays a very important role in the scientific development of modern. with the further research of fractal, many research results of fractal inspire people to rediscover the existing science, among which the part and the whole of fractal and fractal, shaping and fractal etc, these contradictory opposites belonging to the scope of philosophy theory, are of significance to fractal, and many other disciplines.And many disciplines have a very important role in many fractal of the philosophical content of modern science also has a very important role , fractal geometry as a tool to discipline its in-depth research , we will discover a lot of interesting conclusions , while the fractal growth is also conducive to the development of other disciplines. If you just look at fractals from the mathematical perspective , we just get a mathematical tools whose spirituality is lost.But from different angles to observe to study, to get a new fractal, an energetic fractal, one can make a lot of discipline to use , approved fractal, different angles , fractal different application areas in the near future , the role of the fractal will be increasing .
Keywords: fractal Philosophy Influence
Philosophical thought of fractal geometry
11400字 23頁
目錄
引言 1
第一章 分形幾何的產(chǎn)生和發(fā)展 2
1.1海岸線問題的出現(xiàn) 2
1.2曼德布魯特對(duì)于海岸線問題的思考 2
1.3幾個(gè)奇妙的圖形 3
1.4分形幾何的產(chǎn)生 6
1.5分形幾何的發(fā)展 6
第二章 分形幾何的基本內(nèi)容和基本概念 7
2.2分形中的分維 7
2.3相似維數(shù)和盒子維數(shù) 8
2.4分形元 8
第三章 分形所蘊(yùn)含的哲學(xué) 11
3.1分形中的矛盾 11
3.2整體與局部 11
3.3創(chuàng)新的分形 12
3.4成功需要努力 12
3.5分形的美麗 13
第四章 分形幾何對(duì)于現(xiàn)代科學(xué)的影響 14
4.1基石作用 14
4.2維數(shù) 15
4.3隨機(jī)和規(guī)則 15
4.4無處不在的分形 16
結(jié)論 17
致謝 18
參考文獻(xiàn) 19
摘要 分形幾何作為一門發(fā)展時(shí)間較短的數(shù)學(xué)學(xué)科的一個(gè)分支,從分形起源的那個(gè)海岸線問題,到現(xiàn)在已經(jīng)有很多發(fā)展的分形,這門學(xué)科都在一定程度上改變著人們對(duì)于世界的認(rèn)識(shí),在科學(xué)上對(duì)于很多的學(xué)科,分形也起到非常重要的作用,分形中的內(nèi)容也對(duì)于現(xiàn)代的科學(xué)發(fā)展有著非常重要的作用,對(duì)于分形的研究的深入,分形中的很多研究成果也在重新啟發(fā)人們?nèi)ブ匦抡J(rèn)識(shí)現(xiàn)有的科學(xué),其中,分形中的局部與整體,整形與分形等等,這些矛盾的對(duì)立屬于哲學(xué)范圍的理論,在分形,以及很多學(xué)科中都有著非常重要的作用,許許多多的分形中的哲學(xué)內(nèi)容對(duì)現(xiàn)代科學(xué)也有很重要的作用,分形幾何作為一個(gè)工具性學(xué)科對(duì)其研究的深入,我們會(huì)發(fā)現(xiàn)很多很多有意思的結(jié)論,同時(shí)分形的發(fā)展也有利于其他學(xué)科的發(fā)展。如果僅僅用數(shù)學(xué)的眼光去看分形,我們得到的僅僅是一個(gè)失去靈性的數(shù)學(xué)工具,從不同的角度去觀察去研究,能得到一個(gè)全新的分形,一個(gè)活力充沛的分形,一個(gè)可以讓很多學(xué)科使用,認(rèn)可的分形,角度的不同,分形應(yīng)用的領(lǐng)域也不同,在不久的未來,分形的作用將會(huì)越來越大。
關(guān)鍵詞:分形 哲學(xué) 影響
Abstract Fractal geometry, a branch of mathematics whose development time is short, developed from the coastline problem symbolizing the fractal origin, to now have fractal many development. This subject, to a certain extent, changes people's opinions of the world, and plays a very an important role for many disciplines in science. What's more, the content of the fractal plays a very important role in the scientific development of modern. with the further research of fractal, many research results of fractal inspire people to rediscover the existing science, among which the part and the whole of fractal and fractal, shaping and fractal etc, these contradictory opposites belonging to the scope of philosophy theory, are of significance to fractal, and many other disciplines.And many disciplines have a very important role in many fractal of the philosophical content of modern science also has a very important role , fractal geometry as a tool to discipline its in-depth research , we will discover a lot of interesting conclusions , while the fractal growth is also conducive to the development of other disciplines. If you just look at fractals from the mathematical perspective , we just get a mathematical tools whose spirituality is lost.But from different angles to observe to study, to get a new fractal, an energetic fractal, one can make a lot of discipline to use , approved fractal, different angles , fractal different application areas in the near future , the role of the fractal will be increasing .
Keywords: fractal Philosophy Influence