特级做A爰片毛片免费69,永久免费AV无码不卡在线观看,国产精品无码av地址一,久久无码色综合中文字幕

等離激元太陽(yáng)能電池陷光結(jié)構(gòu)模型的解析理論研究.doc

  
約47頁(yè)DOC格式手機(jī)打開(kāi)展開(kāi)

等離激元太陽(yáng)能電池陷光結(jié)構(gòu)模型的解析理論研究,19000字 46頁(yè)目錄第一章 陷光結(jié)構(gòu)及原理...........................................................................11.1陷光.....................................
編號(hào):80-481940大小:1.46M
分類(lèi): 論文>機(jī)械工業(yè)論文

內(nèi)容介紹

此文檔由會(huì)員 sbsiji00 發(fā)布

等離激元太陽(yáng)能電池陷光結(jié)構(gòu)模型的解析理論研究

19000字 46頁(yè)

目錄
第一章 陷光結(jié)構(gòu)及原理...........................................................................1
1.1陷光................................................................................................................1
1.1.1陷光概述.....................................................................................................1
1.1.2陷光技術(shù).....................................................................................................1
1.2 常見(jiàn)陷光結(jié)構(gòu)..............................................................................................3
1.2.1微納陷光光柵結(jié)構(gòu)....................................................................................3
1.2.2薄膜硅太陽(yáng)能電池的陷光結(jié)構(gòu)................................................................6
1.2.3微晶硅太陽(yáng)能電池的陷光結(jié)構(gòu)................................................................8
第二章 陷光模型....................................................................................10
2.1常見(jiàn)陷光模型...............................................................................................10
2.1.1周期為波長(zhǎng)量級(jí)的陷光結(jié)構(gòu)模型............................................................10
2.1.2周期光柵陷光結(jié)構(gòu)模型............................................................................11
2.1.3大結(jié)構(gòu)中的陷光結(jié)構(gòu)模型........................................................................17
2.1.4極小內(nèi)嵌物的陷光結(jié)構(gòu)模型....................................................................18
2.1.5薄膜中的陷光結(jié)構(gòu)模型............................................................................20
2.2常見(jiàn)等離激元太陽(yáng)能電池陷光模型...........................................................22
2.2.1硅-金屬界面表面等離激元(SPP)的陷光結(jié)構(gòu)模型............................22
2.2.2 局部表面等離激元共振(LSPR)的金屬球陷光結(jié)構(gòu)模型.................24
第三章 等離激元太陽(yáng)能電池陷光模型研究..............................................26
3.1硅層厚度對(duì)吸收增強(qiáng)的影響......................................................................26
3.2粒子高度對(duì)吸收增強(qiáng)的影響......................................................................27
3.3粒子半徑對(duì)吸收增強(qiáng)的影響......................................................................28
3.4陣列周期對(duì)吸收增強(qiáng)的影響......................................................................29
3.5研究結(jié)論......................................................................................................32
總結(jié).............................................................................................................34
致謝................................................................................................................36
參考文獻(xiàn)........................................................................................................37
摘要 本論文對(duì)等離激元太陽(yáng)能電池的陷光結(jié)構(gòu)模型進(jìn)行了解析理論研究。本文先通過(guò)求解麥克斯韋方程組和相應(yīng)的邊界條件得到了陷光結(jié)構(gòu)模型的理論解析式,接著利用解析結(jié)果計(jì)算得到了特定陷光結(jié)構(gòu)太陽(yáng)能電池的吸收增強(qiáng),最后利用計(jì)算得到的結(jié)果作圖。由研究結(jié)果可知,陷光結(jié)構(gòu)參數(shù)襯底厚度、粒子高度、粒子半徑和陣列周期均會(huì)影響吸收增強(qiáng)。為了得到較高的吸收增強(qiáng),襯底厚度需在2000 nm范圍內(nèi)取值;粒子高度和粒子半徑分別在峰值75 nm和140 nm附近取值較理想,偏離峰值吸收增強(qiáng)均降低;對(duì)每個(gè)特定的半徑,吸收增強(qiáng)隨著周期增大而急劇增加,陣列周期在峰值附近取值可以獲得較高的吸收增強(qiáng),到達(dá)峰值后吸收增強(qiáng)一直趨向于1。隨著半徑的增加,峰值發(fā)生了紅移。

關(guān)鍵詞: 等離激元太陽(yáng)能電池 陷光結(jié)構(gòu) 吸收增強(qiáng)


Analytic theory of light trapping structural models at plasmonic solar cells

Abstract The key contribution of this thesis is an analytical theoretically investigation of light trapping structural models in plasmonic solar cells. In this work, we firstly obtained the analytical theoretically results of light trapping structural models by solving Maxwell’s equations with the corresponding boundary conditions. Then, we calculated the absorption enhancement of solar cells. Finally, using the obtained results, we plot pictures to quantitatively investigate the optical absorption enhancement effect. From final results, we find that the parameters of light trapping structure, that is, thickness of substrates, height and radius of particles, and array periods, have an obvious effect on absorption enhancement. In order to get a higher absorption enhancement, the value required for substrates thickness should be within the range of 2000 nm. The perfect values of particle height and radius are around the peak points with 75 nm and 140 nm respectively, and absorption enhancement decreased if values deviate from the peak points. For the array period structure, it will obtain a higher absorption enhancement when the period is in the vicinity of peak value for each specific radius. And absorption enhancement shows a sharp increase with the growing of per..