一種用自適應(yīng)內(nèi)模型的電流控制方案(外文翻譯).rar
一種用自適應(yīng)內(nèi)模型的電流控制方案(外文翻譯),針對永磁同步電機(jī)的魯棒電流調(diào)節(jié)和轉(zhuǎn)矩波動抑制的包含中文翻譯和英文原文,內(nèi)容詳細(xì)完整,建議下載參考!中文:1200 字英文:4000 字符摘要:本文針對永磁同步電機(jī)在實際運(yùn)行中的不穩(wěn)定問題,提出了一種基于電流反饋控制結(jié)構(gòu)的簡單自適應(yīng)內(nèi)模型。實際的永磁同步電機(jī)控制系統(tǒng)是一個時變系...
該文檔為壓縮文件,包含的文件列表如下:
內(nèi)容介紹
原文檔由會員 xiaowei 發(fā)布
針對永磁同步電機(jī)的魯棒電流調(diào)節(jié)和轉(zhuǎn)矩波動抑制的一種用自適應(yīng)內(nèi)模型的電流控制方案(外文翻譯)
包含中文翻譯和英文原文,內(nèi)容詳細(xì)完整,建議下載參考!
中文:1200 字
英文:4000 字符
摘要:本文針對永磁同步電機(jī)在實際運(yùn)行中的不穩(wěn)定問題,提出了一種基于電流反饋控制結(jié)構(gòu)的簡單自適應(yīng)內(nèi)模型。實際的永磁同步電機(jī)控制系統(tǒng)是一個時變系統(tǒng),內(nèi)模型根據(jù)電機(jī)系統(tǒng)不同的運(yùn)行狀態(tài)選擇合適的不確定性估計函數(shù)。隨后,在控制系統(tǒng)中建立以不確定估計函數(shù)為基礎(chǔ)的頻率模型,并以魯棒電流的形式完成對系統(tǒng)的控制。此外,這種不確定性估計函數(shù)模型,也為永磁同步電機(jī)轉(zhuǎn)矩波動抑制提供了一個有效地解決方案。頻率模型還能抑制在穩(wěn)定閉環(huán)系統(tǒng)中的諧波干擾,這是因為根據(jù)不同的諧波干擾內(nèi)模型能建立相應(yīng)的頻率模型。為了得到一個大帶寬的不確定性估計,利用李雅普諾夫函數(shù)和電流動力學(xué)方程推導(dǎo)出了一個簡單的自適應(yīng)函數(shù)。通過對比不同系統(tǒng)在該控制方案下的控制效果,可以看出本文提出的控制策略是十分有效地。
索引詞:自適應(yīng)控制 電流控制 自模型 永磁同步電機(jī) 轉(zhuǎn)矩波動抑制
Abstract: This paper addresses the problem of uncertainties in practical permanent magnet synchronous motors (PMSM) ,and proposes a simple adaptive internal model within the current feedback structure as a solution Due to the time uncertainties in a practical PMSM drive system , the internal model is simply chosen as the estimated uncertainty function , which adaptively varies with different operating conditions. Subsequently ,the frequency modes of the uncertainty function are embedded in the control effort , and a robust current control performance is yielded . Furthermore , the inclusion of estimated uncertainty function provides an efficient solution for ripple minimization in PMSM drives. This is because the frequency modes of the disturbances to be eliminated i.e., the flux harmonics , are included in the stable closed loop system . As a result , the different frequency modes corresponding to the flux harmonics. To provide a high bandwidth estimate of the uncertainty function , simple adaptation law is derived , in the sense of Lyapunov functions ,using the nominal current dynamics. Comparative evaluation results are presented to demonstrate the effectiveness of the proposed control scheme under different operating conditions.
包含中文翻譯和英文原文,內(nèi)容詳細(xì)完整,建議下載參考!
中文:1200 字
英文:4000 字符
摘要:本文針對永磁同步電機(jī)在實際運(yùn)行中的不穩(wěn)定問題,提出了一種基于電流反饋控制結(jié)構(gòu)的簡單自適應(yīng)內(nèi)模型。實際的永磁同步電機(jī)控制系統(tǒng)是一個時變系統(tǒng),內(nèi)模型根據(jù)電機(jī)系統(tǒng)不同的運(yùn)行狀態(tài)選擇合適的不確定性估計函數(shù)。隨后,在控制系統(tǒng)中建立以不確定估計函數(shù)為基礎(chǔ)的頻率模型,并以魯棒電流的形式完成對系統(tǒng)的控制。此外,這種不確定性估計函數(shù)模型,也為永磁同步電機(jī)轉(zhuǎn)矩波動抑制提供了一個有效地解決方案。頻率模型還能抑制在穩(wěn)定閉環(huán)系統(tǒng)中的諧波干擾,這是因為根據(jù)不同的諧波干擾內(nèi)模型能建立相應(yīng)的頻率模型。為了得到一個大帶寬的不確定性估計,利用李雅普諾夫函數(shù)和電流動力學(xué)方程推導(dǎo)出了一個簡單的自適應(yīng)函數(shù)。通過對比不同系統(tǒng)在該控制方案下的控制效果,可以看出本文提出的控制策略是十分有效地。
索引詞:自適應(yīng)控制 電流控制 自模型 永磁同步電機(jī) 轉(zhuǎn)矩波動抑制
Abstract: This paper addresses the problem of uncertainties in practical permanent magnet synchronous motors (PMSM) ,and proposes a simple adaptive internal model within the current feedback structure as a solution Due to the time uncertainties in a practical PMSM drive system , the internal model is simply chosen as the estimated uncertainty function , which adaptively varies with different operating conditions. Subsequently ,the frequency modes of the uncertainty function are embedded in the control effort , and a robust current control performance is yielded . Furthermore , the inclusion of estimated uncertainty function provides an efficient solution for ripple minimization in PMSM drives. This is because the frequency modes of the disturbances to be eliminated i.e., the flux harmonics , are included in the stable closed loop system . As a result , the different frequency modes corresponding to the flux harmonics. To provide a high bandwidth estimate of the uncertainty function , simple adaptation law is derived , in the sense of Lyapunov functions ,using the nominal current dynamics. Comparative evaluation results are presented to demonstrate the effectiveness of the proposed control scheme under different operating conditions.