[外文翻譯]利用一般的運動學模式對五軸機床的結(jié)構(gòu)進行分析.rar
[外文翻譯]利用一般的運動學模式對五軸機床的結(jié)構(gòu)進行分析,/con.guration analysis of .ve-axis machine tools using a generic kinematic model內(nèi)包含中文翻譯和英文原文,內(nèi)容完善,建議下載閱覽。①中文頁數(shù)15中文字數(shù)8952②英文頁數(shù)16英文字數(shù)5...
該文檔為壓縮文件,包含的文件列表如下:


內(nèi)容介紹
原文檔由會員 鄭軍 發(fā)布
[外文翻譯]利用一般的運動學模式對五軸機床的結(jié)構(gòu)進行分析/Con.guration analysis of .ve-axis machine tools using a generic kinematic model
內(nèi)包含中文翻譯和英文原文,內(nèi)容完善,建議下載閱覽。
①中文頁數(shù)15
中文字數(shù)8952
②英文頁數(shù)16
英文字數(shù)5777
③ 摘要
五軸機床的設計常用于許多種類的運動學配置和結(jié)構(gòu)中。先不管將要分析的這種類型,為了確定實現(xiàn)切削刀具相對工件的的具體位置和方向所必須的平移和旋轉(zhuǎn)合成運動,一種機床的運動學模型將得到闡述。在本次研究中,一種通用和統(tǒng)一的模型作為可變選擇的特殊的僅運用于單獨機器配置的解決方案將得到闡述。這種通用的模型可用于檢驗兩旋轉(zhuǎn)連接件在三種主要的五軸機床運動鏈中的可行性:旋轉(zhuǎn)軸,旋轉(zhuǎn)工作臺以及混合類型。一種完整的平移合成運動數(shù)字測量已經(jīng)提出用于估計五軸機床的運動性能。相對應的運動分析已經(jīng)證實了利用交叉旋轉(zhuǎn)軸和在設置中最小化典型的切削刀具和工件旋轉(zhuǎn)臂長度共同的工業(yè)實踐的普及的機械設計的效益。
Five-axis machine tools are designed in a large variety of kinematic con.gurations and structures. Regardless of the type of the intended analysis, a kinematic model of the machine tool has to be developed in order to determine the translational and rotational joint movements required to achieve a speci.ed position and orientation of the cutting tool relative to the workpiece. A
generic and uni.ed model is developed in this study as a viable alternative to the particular solutions that are only applicable to individual machine con.gurations. This versatile model is then used to verify the feasibility of the two rotational joints within the kinematic chain of three main types of .ve-axis machine tools: the spindle rotating, rotary table, and hybrid type. A numerical measure of total translational joint movement is proposed to evaluate the kinematic performance of a .ve-axis machine tool. The corresponding kinematic analyses have con.rmed the advantages of the popular machine design that employs intersecting rotational axes and the common industrial practice during setup that minimizes the characteristic rotating arm length of the cutting tool and/or workpiece.
④關鍵字 五軸機/Five-axis machin
⑤參考文獻
[1] M. Tsutsumi, A. Saito, Identi.cation and compensation of systematic deviations particular to 5-axis machining centers, International Journal of Machine Tools and Manufacture 43 (8) (2003) 771–780.
[2] K.J. Campshure, Mapping your way to .ve-axis machining, Modern Machine Shop 70 (6) (1997) 98–108.
[3] P. Zelinski, Four types of .ve-axis machining centers, Modern Machine Shop 71 (10) (1999) 94–103.
[4] J. Denavit, R.S. Hartenberg, A kinematic notation for lowerpair mechanisms based on matrices, ASME Journal of Applied Mechanics 22 (2) (1955) 215–221.
[5] R.P. Paul, Robot Manipulators: Mathematics, Programming and Control, MIT Press, Cambridge, MA, 1981.
[6] D.N. Reshetov, V.T. Portman, Accuracy of Machine Tools,ASME Press, New York, 1988.
[7] S.H. Suh, J.J. Lee, Five-axis part machining with three-axis CNC machine and indexing table, ASME Journal of Manufacturing Science and Engineering 120 (1998) 120–128.
[8] E. Bohez, S.S. Makhanov, K. Sonthipermpoon, Adaptive nonlinear tool path optimization for .ve-axis machining, International Journal of Production Research 38 (17) (2000) 4329–4343.
內(nèi)包含中文翻譯和英文原文,內(nèi)容完善,建議下載閱覽。
①中文頁數(shù)15
中文字數(shù)8952
②英文頁數(shù)16
英文字數(shù)5777
③ 摘要
五軸機床的設計常用于許多種類的運動學配置和結(jié)構(gòu)中。先不管將要分析的這種類型,為了確定實現(xiàn)切削刀具相對工件的的具體位置和方向所必須的平移和旋轉(zhuǎn)合成運動,一種機床的運動學模型將得到闡述。在本次研究中,一種通用和統(tǒng)一的模型作為可變選擇的特殊的僅運用于單獨機器配置的解決方案將得到闡述。這種通用的模型可用于檢驗兩旋轉(zhuǎn)連接件在三種主要的五軸機床運動鏈中的可行性:旋轉(zhuǎn)軸,旋轉(zhuǎn)工作臺以及混合類型。一種完整的平移合成運動數(shù)字測量已經(jīng)提出用于估計五軸機床的運動性能。相對應的運動分析已經(jīng)證實了利用交叉旋轉(zhuǎn)軸和在設置中最小化典型的切削刀具和工件旋轉(zhuǎn)臂長度共同的工業(yè)實踐的普及的機械設計的效益。
Five-axis machine tools are designed in a large variety of kinematic con.gurations and structures. Regardless of the type of the intended analysis, a kinematic model of the machine tool has to be developed in order to determine the translational and rotational joint movements required to achieve a speci.ed position and orientation of the cutting tool relative to the workpiece. A
generic and uni.ed model is developed in this study as a viable alternative to the particular solutions that are only applicable to individual machine con.gurations. This versatile model is then used to verify the feasibility of the two rotational joints within the kinematic chain of three main types of .ve-axis machine tools: the spindle rotating, rotary table, and hybrid type. A numerical measure of total translational joint movement is proposed to evaluate the kinematic performance of a .ve-axis machine tool. The corresponding kinematic analyses have con.rmed the advantages of the popular machine design that employs intersecting rotational axes and the common industrial practice during setup that minimizes the characteristic rotating arm length of the cutting tool and/or workpiece.
④關鍵字 五軸機/Five-axis machin
⑤參考文獻
[1] M. Tsutsumi, A. Saito, Identi.cation and compensation of systematic deviations particular to 5-axis machining centers, International Journal of Machine Tools and Manufacture 43 (8) (2003) 771–780.
[2] K.J. Campshure, Mapping your way to .ve-axis machining, Modern Machine Shop 70 (6) (1997) 98–108.
[3] P. Zelinski, Four types of .ve-axis machining centers, Modern Machine Shop 71 (10) (1999) 94–103.
[4] J. Denavit, R.S. Hartenberg, A kinematic notation for lowerpair mechanisms based on matrices, ASME Journal of Applied Mechanics 22 (2) (1955) 215–221.
[5] R.P. Paul, Robot Manipulators: Mathematics, Programming and Control, MIT Press, Cambridge, MA, 1981.
[6] D.N. Reshetov, V.T. Portman, Accuracy of Machine Tools,ASME Press, New York, 1988.
[7] S.H. Suh, J.J. Lee, Five-axis part machining with three-axis CNC machine and indexing table, ASME Journal of Manufacturing Science and Engineering 120 (1998) 120–128.
[8] E. Bohez, S.S. Makhanov, K. Sonthipermpoon, Adaptive nonlinear tool path optimization for .ve-axis machining, International Journal of Production Research 38 (17) (2000) 4329–4343.