本科畢業(yè)論:數(shù)形結(jié)合思想在解題中的應(yīng)用.doc
約10頁DOC格式手機(jī)打開展開
本科畢業(yè)論:數(shù)形結(jié)合思想在解題中的應(yīng)用,目錄摘要1關(guān)鍵詞1abstract1key words11 前言22 數(shù)形結(jié)合思想在解題中的應(yīng)用22.1實數(shù)與數(shù)軸上的點的對應(yīng)關(guān)系中的應(yīng)用22.2函數(shù)與圖像的對應(yīng)關(guān)系中的應(yīng)用32.3曲線與方程的對應(yīng)關(guān)系中的應(yīng)用42.4以幾何關(guān)系和幾何條件為背景建立起來的概念中的應(yīng)用52.5所給的等式或代數(shù)式的結(jié)構(gòu)含有明顯的幾何意義中的...
內(nèi)容介紹
此文檔由會員 1295820189 發(fā)布
目錄
摘要 1
關(guān)鍵詞 1
ABSTRACT 1
KEY WORDS 1
1 前言 2
2 數(shù)形結(jié)合思想在解題中的應(yīng)用 2
2.1實數(shù)與數(shù)軸上的點的對應(yīng)關(guān)系中的應(yīng)用 2
2.2函數(shù)與圖像的對應(yīng)關(guān)系中的應(yīng)用 3
2.3曲線與方程的對應(yīng)關(guān)系中的應(yīng)用 4
2.4以幾何關(guān)系和幾何條件為背景建立起來的概念中的應(yīng)用 5
2.5所給的等式或代數(shù)式的結(jié)構(gòu)含有明顯的幾何意義中的應(yīng)用 6
3 結(jié)束語 7
參考文獻(xiàn): 8
致謝 8
數(shù)形結(jié)合思想在解題中的應(yīng)用
汪 錦
數(shù)學(xué)與信息學(xué)院數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè) 2009級 指導(dǎo)老師:趙勇
摘要:數(shù)形結(jié)合是中學(xué)數(shù)學(xué)的基本思想方法之一。所謂數(shù)形結(jié)合思想,就是根據(jù)數(shù)與形之間的對應(yīng)關(guān)系,通過數(shù)與形的對應(yīng)關(guān)系和轉(zhuǎn)換來解決數(shù)學(xué)問題的思想。它被廣泛的運用在解決數(shù)學(xué)問題中。本文首先闡述了什么是數(shù)形結(jié)合,其次結(jié)合相關(guān)例題著重闡述數(shù)形結(jié)合思想的重要作用及如何應(yīng)用。這樣不僅有利于學(xué)生順利的、高效的學(xué)習(xí)數(shù)學(xué)知識,更有利于學(xué)生學(xué)習(xí)興趣的培養(yǎng)、智力的培養(yǎng)、智力的開發(fā)、能力的增強(qiáng),使教學(xué)收到事半功倍的效果,從而讓學(xué)生體會到數(shù)學(xué)教學(xué)充滿樂趣。
關(guān)鍵詞:數(shù)形結(jié)合思想;解題;應(yīng)用;抽象;直觀
Application of the figure and shape combination in solving problems
Wangjin
College of Mathematic&Information Grade 2009 Instructor:zhaoyong
ABSTRACT: The combination of number and shape is one of the basic ideas and methods in middle school mathematics。The so-called number form combining thought is according to the corresponding relationship between the number and shape to solve mathematical problems by the number and shape of correspondence and transformation of thought。It is widely used in solving mathematical problems. This paper focuses on the combination of thinking in solving problems. And combined with some examples to explain. This is not only conducive to the student's smooth and efficient learning mathematical knowledge is more conducive to student interest in learning culture the culture of intelligence the development of intelligence capabilities make teaching a multiplier effect allowing students to understand mathematics teachingfun.。
KEY WORDS: The idea of combining numbers with shapes;Problem solving; application; abstract; intuitive
摘要 1
關(guān)鍵詞 1
ABSTRACT 1
KEY WORDS 1
1 前言 2
2 數(shù)形結(jié)合思想在解題中的應(yīng)用 2
2.1實數(shù)與數(shù)軸上的點的對應(yīng)關(guān)系中的應(yīng)用 2
2.2函數(shù)與圖像的對應(yīng)關(guān)系中的應(yīng)用 3
2.3曲線與方程的對應(yīng)關(guān)系中的應(yīng)用 4
2.4以幾何關(guān)系和幾何條件為背景建立起來的概念中的應(yīng)用 5
2.5所給的等式或代數(shù)式的結(jié)構(gòu)含有明顯的幾何意義中的應(yīng)用 6
3 結(jié)束語 7
參考文獻(xiàn): 8
致謝 8
數(shù)形結(jié)合思想在解題中的應(yīng)用
汪 錦
數(shù)學(xué)與信息學(xué)院數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè) 2009級 指導(dǎo)老師:趙勇
摘要:數(shù)形結(jié)合是中學(xué)數(shù)學(xué)的基本思想方法之一。所謂數(shù)形結(jié)合思想,就是根據(jù)數(shù)與形之間的對應(yīng)關(guān)系,通過數(shù)與形的對應(yīng)關(guān)系和轉(zhuǎn)換來解決數(shù)學(xué)問題的思想。它被廣泛的運用在解決數(shù)學(xué)問題中。本文首先闡述了什么是數(shù)形結(jié)合,其次結(jié)合相關(guān)例題著重闡述數(shù)形結(jié)合思想的重要作用及如何應(yīng)用。這樣不僅有利于學(xué)生順利的、高效的學(xué)習(xí)數(shù)學(xué)知識,更有利于學(xué)生學(xué)習(xí)興趣的培養(yǎng)、智力的培養(yǎng)、智力的開發(fā)、能力的增強(qiáng),使教學(xué)收到事半功倍的效果,從而讓學(xué)生體會到數(shù)學(xué)教學(xué)充滿樂趣。
關(guān)鍵詞:數(shù)形結(jié)合思想;解題;應(yīng)用;抽象;直觀
Application of the figure and shape combination in solving problems
Wangjin
College of Mathematic&Information Grade 2009 Instructor:zhaoyong
ABSTRACT: The combination of number and shape is one of the basic ideas and methods in middle school mathematics。The so-called number form combining thought is according to the corresponding relationship between the number and shape to solve mathematical problems by the number and shape of correspondence and transformation of thought。It is widely used in solving mathematical problems. This paper focuses on the combination of thinking in solving problems. And combined with some examples to explain. This is not only conducive to the student's smooth and efficient learning mathematical knowledge is more conducive to student interest in learning culture the culture of intelligence the development of intelligence capabilities make teaching a multiplier effect allowing students to understand mathematics teachingfun.。
KEY WORDS: The idea of combining numbers with shapes;Problem solving; application; abstract; intuitive