直接啟動齒輪加工機(jī)床精度研究(本科畢業(yè)論文設(shè)計).doc
約39頁DOC格式手機(jī)打開展開
直接啟動齒輪加工機(jī)床精度研究(本科畢業(yè)論文設(shè)計),摘要齒輪加工正朝著環(huán)保、高效、高精度加工方向發(fā)展,齒輪加工機(jī)床正朝著全數(shù)控、功能復(fù)合、柔性、自動化、安全性及網(wǎng)絡(luò)化方向發(fā)展。傳統(tǒng)機(jī)械式滾齒機(jī)傳動結(jié)構(gòu)異常復(fù)雜、傳動效率低、傳動精度差、磨損嚴(yán)重、切削速度低,在各方面都不能滿足現(xiàn)代滾齒機(jī)的性能要求;因此,國外的部分廠家從最近幾年才開始研制“零傳動”齒輪加工機(jī)床?!傲銈鲃印奔?..


內(nèi)容介紹
此文檔由會員 genmail 發(fā)布
摘 要
齒輪加工正朝著環(huán)保、高效、高精度加工方向發(fā)展,齒輪加工機(jī)床正朝著全數(shù)控、功能復(fù)合、柔性、自動化、安全性及網(wǎng)絡(luò)化方向發(fā)展。傳統(tǒng)機(jī)械式滾齒機(jī)傳動結(jié)構(gòu)異常復(fù)雜、傳動效率低、傳動精度差、磨損嚴(yán)重、切削速度低,在各方面都不能滿足現(xiàn)代滾齒機(jī)的性能要求;因此,國外的部分廠家從最近幾年才開始研制“零傳動”齒輪加工機(jī)床。“零傳動”即直接驅(qū)動,直接驅(qū)動齒輪加工機(jī)床突破了傳統(tǒng)齒輪加工機(jī)床的結(jié)構(gòu)設(shè)計原理,采用電主軸和內(nèi)置力矩電機(jī)直接驅(qū)動滾刀旋轉(zhuǎn)運動和工件軸旋轉(zhuǎn)運動,是齒輪機(jī)床設(shè)計技術(shù)的重大變革。
本文先介紹了直接驅(qū)動齒輪加工機(jī)床的基本布局形式,機(jī)床的床身結(jié)構(gòu),機(jī)床的排屑系統(tǒng),機(jī)床傳動系統(tǒng)以及主軸系統(tǒng)。從而大概了解了直接驅(qū)動齒輪加工機(jī)床的空間結(jié)構(gòu)以及運動形式。
本文的重點是將多體系統(tǒng)理論與齒輪嚙合原理結(jié)合起來,根據(jù)數(shù)控滾齒機(jī)運動的實際情況,在比較全面地考慮了由于制造誤差、安裝誤差、運動控制不精確以及其它原因引起的機(jī)床部件初始位置誤差與運動誤差等因素后,對數(shù)控滾齒機(jī)的滾齒嚙合進(jìn)行了分析,建立了齒輪節(jié)距誤差的誤差模型。并對該模型進(jìn)行試切驗證,可以得出該模型的可用性。該模型包含了由于制造、安裝、運動控制不精確和刀具、床身、工件熱變形以及其它因素引起的初始位置誤差與運動誤差,反映了機(jī)床誤差的實際變化規(guī)律。模型的建立為機(jī)床誤差進(jìn)行有效預(yù)測、控制和補(bǔ)償,進(jìn)一步提高機(jī)床加工精度奠定了理論基礎(chǔ)。
最后本文通過分析動態(tài)特性對齒輪加工機(jī)床的加工精度的影響,提出了提高機(jī)床動態(tài)特性的措施,著重從工件主軸和刀具主軸著手,提出提高動態(tài)特性的措施,來增加機(jī)床的抗振性和切削穩(wěn)定性,以達(dá)到要求的加工精度。
關(guān)鍵詞:直接驅(qū)動,滾齒機(jī),多體系統(tǒng)理論,誤差建模,加工精度,動態(tài)特性
ABSTRACT
The gear processing is developed an environment protecting, high-efficiency, high-precision mode, meanwhile the gear machine tools developed the completely-digital-control, function-complex, flexible, automatic, secure and network mode. Traditional gear hobbing machine can not satisfy performance demand of modern gear hobbing machine, so ,some overseas companies have started to study zero-chain gear hobbing machine. zero-chain is direct drive, direct drive gear hobbing machine breaks through structure design principle of traditional gear cutting machine ,in which motorized spindle and built-in torque motor have been applied to realize rotary of hobbing cutter and workpiece-shaft.it is an important technological innovation of the design of gear machine tool.
In the first, This article introduces the general layout of the direct-drive gear hobbing machine,bed structure and chip evacuation system of the machine ,drive system and main spindle system of the machine ,to comprehend the space structure and the movement form.
The important of this article is combining multi-body System theory with meshing principle, the paper analyzed hobbing mesh of NC gear hobbing machine, built error model of workpiece tooth face’s error. The model was built according to the actual conditions of the NC gear hobbing machine moving. It includes initial position error and movement error caused by manufacture, assemble, imprecision motion controlling, temperature distortion and other reasons. It also responds the actual changing rule of the machine tool error. The setting-up of the model is a theoretical foundation of controlled and compensated effectively for the error of the machine tool, and it can improve the machining precision of the machine tool further.
In the end, this article ansyses how the dynamic performance affect the manufacturing precision, to present how to improve the dynamic performance. Emphatically, this article present how to improve the dynamic performance on workpiece spin system and tool spindle system to increase the ability of resist vibration and cutting stability, so as to reach the manufacturing precision.
Key words:Direct-drive, Gear Hobbing Machine, Multi-body System Theory, Error Modeling, Manufacturing Precision, Dynamic Performance
目 錄
中文摘要 Ⅰ
ABSTRACT Ⅱ
1緒論 1
1.1 齒輪加工機(jī)床 1
1.2 直接驅(qū)動齒輪加工機(jī)床 1
1.3 數(shù)控機(jī)床加工精度的國內(nèi)外研究概況 2
1.4 課題來源及研究意義 3
1.4.1 課題來源 3
1.4.2 課題的研究意義 3
1.5 本文研究的主要內(nèi)容 4
2 直接驅(qū)動齒輪加工機(jī)床總體結(jié)構(gòu)概述 5
2.1 直接驅(qū)動齒輪加工機(jī)床總體布局 5
2.2 直接驅(qū)動齒輪加工機(jī)床床身及排屑系統(tǒng) 6
2.2.1 直接驅(qū)動齒輪加工機(jī)床床身結(jié)構(gòu) 6
2.2.2直接驅(qū)動齒輪加工機(jī)床排屑系統(tǒng) 7
2.3 直接驅(qū)動齒輪加工機(jī)床傳動系統(tǒng)概述 7
2.3.1 直接驅(qū)動齒輪加工機(jī)床運動概述 7
2.3.2 直接驅(qū)動齒輪加工機(jī)床傳動系統(tǒng) 8
2.4 直接驅(qū)動齒輪加工機(jī)床主軸系統(tǒng)概述 8
2.4.1 直接驅(qū)動齒輪加工機(jī)床工件主軸系統(tǒng)概述 8
2.4.2 直接驅(qū)動齒輪加工機(jī)床刀具主軸系統(tǒng)概述 9
2.5 本意小結(jié) 10
3 基于多體系統(tǒng)的直接驅(qū)動齒輪加工機(jī)床加工精度分析 11
3.1 多體系統(tǒng)誤差分析建模概述 11
3.2 基于多體系統(tǒng)的直接驅(qū)動齒輪加工機(jī)床加工精度分析 11
3.2.1 直接驅(qū)動齒輪加工機(jī)床拓?fù)浣Y(jié)構(gòu)描述 11
3.2.2 直接驅(qū)動加工機(jī)床坐標(biāo)系的設(shè)定 14
3.2.3 理想運動的變換矩陣 14
3.2.4 各體之間影響齒輪節(jié)距誤差的誤差變換矩陣 16
3.2.5 相鄰體間影響節(jié)距誤差的變換矩陣的建立 20
3.3 直接驅(qū)動齒輪加工機(jī)床的齒輪節(jié)距誤差模型的建立 22
3.3.1 直接..
齒輪加工正朝著環(huán)保、高效、高精度加工方向發(fā)展,齒輪加工機(jī)床正朝著全數(shù)控、功能復(fù)合、柔性、自動化、安全性及網(wǎng)絡(luò)化方向發(fā)展。傳統(tǒng)機(jī)械式滾齒機(jī)傳動結(jié)構(gòu)異常復(fù)雜、傳動效率低、傳動精度差、磨損嚴(yán)重、切削速度低,在各方面都不能滿足現(xiàn)代滾齒機(jī)的性能要求;因此,國外的部分廠家從最近幾年才開始研制“零傳動”齒輪加工機(jī)床。“零傳動”即直接驅(qū)動,直接驅(qū)動齒輪加工機(jī)床突破了傳統(tǒng)齒輪加工機(jī)床的結(jié)構(gòu)設(shè)計原理,采用電主軸和內(nèi)置力矩電機(jī)直接驅(qū)動滾刀旋轉(zhuǎn)運動和工件軸旋轉(zhuǎn)運動,是齒輪機(jī)床設(shè)計技術(shù)的重大變革。
本文先介紹了直接驅(qū)動齒輪加工機(jī)床的基本布局形式,機(jī)床的床身結(jié)構(gòu),機(jī)床的排屑系統(tǒng),機(jī)床傳動系統(tǒng)以及主軸系統(tǒng)。從而大概了解了直接驅(qū)動齒輪加工機(jī)床的空間結(jié)構(gòu)以及運動形式。
本文的重點是將多體系統(tǒng)理論與齒輪嚙合原理結(jié)合起來,根據(jù)數(shù)控滾齒機(jī)運動的實際情況,在比較全面地考慮了由于制造誤差、安裝誤差、運動控制不精確以及其它原因引起的機(jī)床部件初始位置誤差與運動誤差等因素后,對數(shù)控滾齒機(jī)的滾齒嚙合進(jìn)行了分析,建立了齒輪節(jié)距誤差的誤差模型。并對該模型進(jìn)行試切驗證,可以得出該模型的可用性。該模型包含了由于制造、安裝、運動控制不精確和刀具、床身、工件熱變形以及其它因素引起的初始位置誤差與運動誤差,反映了機(jī)床誤差的實際變化規(guī)律。模型的建立為機(jī)床誤差進(jìn)行有效預(yù)測、控制和補(bǔ)償,進(jìn)一步提高機(jī)床加工精度奠定了理論基礎(chǔ)。
最后本文通過分析動態(tài)特性對齒輪加工機(jī)床的加工精度的影響,提出了提高機(jī)床動態(tài)特性的措施,著重從工件主軸和刀具主軸著手,提出提高動態(tài)特性的措施,來增加機(jī)床的抗振性和切削穩(wěn)定性,以達(dá)到要求的加工精度。
關(guān)鍵詞:直接驅(qū)動,滾齒機(jī),多體系統(tǒng)理論,誤差建模,加工精度,動態(tài)特性
ABSTRACT
The gear processing is developed an environment protecting, high-efficiency, high-precision mode, meanwhile the gear machine tools developed the completely-digital-control, function-complex, flexible, automatic, secure and network mode. Traditional gear hobbing machine can not satisfy performance demand of modern gear hobbing machine, so ,some overseas companies have started to study zero-chain gear hobbing machine. zero-chain is direct drive, direct drive gear hobbing machine breaks through structure design principle of traditional gear cutting machine ,in which motorized spindle and built-in torque motor have been applied to realize rotary of hobbing cutter and workpiece-shaft.it is an important technological innovation of the design of gear machine tool.
In the first, This article introduces the general layout of the direct-drive gear hobbing machine,bed structure and chip evacuation system of the machine ,drive system and main spindle system of the machine ,to comprehend the space structure and the movement form.
The important of this article is combining multi-body System theory with meshing principle, the paper analyzed hobbing mesh of NC gear hobbing machine, built error model of workpiece tooth face’s error. The model was built according to the actual conditions of the NC gear hobbing machine moving. It includes initial position error and movement error caused by manufacture, assemble, imprecision motion controlling, temperature distortion and other reasons. It also responds the actual changing rule of the machine tool error. The setting-up of the model is a theoretical foundation of controlled and compensated effectively for the error of the machine tool, and it can improve the machining precision of the machine tool further.
In the end, this article ansyses how the dynamic performance affect the manufacturing precision, to present how to improve the dynamic performance. Emphatically, this article present how to improve the dynamic performance on workpiece spin system and tool spindle system to increase the ability of resist vibration and cutting stability, so as to reach the manufacturing precision.
Key words:Direct-drive, Gear Hobbing Machine, Multi-body System Theory, Error Modeling, Manufacturing Precision, Dynamic Performance
目 錄
中文摘要 Ⅰ
ABSTRACT Ⅱ
1緒論 1
1.1 齒輪加工機(jī)床 1
1.2 直接驅(qū)動齒輪加工機(jī)床 1
1.3 數(shù)控機(jī)床加工精度的國內(nèi)外研究概況 2
1.4 課題來源及研究意義 3
1.4.1 課題來源 3
1.4.2 課題的研究意義 3
1.5 本文研究的主要內(nèi)容 4
2 直接驅(qū)動齒輪加工機(jī)床總體結(jié)構(gòu)概述 5
2.1 直接驅(qū)動齒輪加工機(jī)床總體布局 5
2.2 直接驅(qū)動齒輪加工機(jī)床床身及排屑系統(tǒng) 6
2.2.1 直接驅(qū)動齒輪加工機(jī)床床身結(jié)構(gòu) 6
2.2.2直接驅(qū)動齒輪加工機(jī)床排屑系統(tǒng) 7
2.3 直接驅(qū)動齒輪加工機(jī)床傳動系統(tǒng)概述 7
2.3.1 直接驅(qū)動齒輪加工機(jī)床運動概述 7
2.3.2 直接驅(qū)動齒輪加工機(jī)床傳動系統(tǒng) 8
2.4 直接驅(qū)動齒輪加工機(jī)床主軸系統(tǒng)概述 8
2.4.1 直接驅(qū)動齒輪加工機(jī)床工件主軸系統(tǒng)概述 8
2.4.2 直接驅(qū)動齒輪加工機(jī)床刀具主軸系統(tǒng)概述 9
2.5 本意小結(jié) 10
3 基于多體系統(tǒng)的直接驅(qū)動齒輪加工機(jī)床加工精度分析 11
3.1 多體系統(tǒng)誤差分析建模概述 11
3.2 基于多體系統(tǒng)的直接驅(qū)動齒輪加工機(jī)床加工精度分析 11
3.2.1 直接驅(qū)動齒輪加工機(jī)床拓?fù)浣Y(jié)構(gòu)描述 11
3.2.2 直接驅(qū)動加工機(jī)床坐標(biāo)系的設(shè)定 14
3.2.3 理想運動的變換矩陣 14
3.2.4 各體之間影響齒輪節(jié)距誤差的誤差變換矩陣 16
3.2.5 相鄰體間影響節(jié)距誤差的變換矩陣的建立 20
3.3 直接驅(qū)動齒輪加工機(jī)床的齒輪節(jié)距誤差模型的建立 22
3.3.1 直接..
TA們正在看...
- 一年級應(yīng)用題集錦500例.pdf
- 一年級提高語文教學(xué)質(zhì)量的措施.doc
- 一年級數(shù)學(xué)100以內(nèi)加減混合運算口算題題目和答案.doc
- 一年級數(shù)學(xué)100以內(nèi)口算練習(xí)題.doc
- 一年級數(shù)學(xué)一圖四式專項綜合練習(xí)題.doc
- 一年級數(shù)學(xué)上冊前后測試題.doc
- 一年級數(shù)學(xué)上冊可愛的校園.doc
- 一年級數(shù)學(xué)上冊各單元教學(xué)分析.doc
- 一年級數(shù)學(xué)上冊思維導(dǎo)圖pdf.doc
- 一年級數(shù)學(xué)上冊拓展題大全.doc